<span id="5nxvn"><dl id="5nxvn"></dl></span>
<strike id="5nxvn"></strike>
<ruby id="5nxvn"><dl id="5nxvn"></dl></ruby>
<strike id="5nxvn"></strike>
<th id="5nxvn"></th>
<span id="5nxvn"><video id="5nxvn"></video></span>
  • EI
  • Scopus
  • 食品科學與工程領域高質量科技期刊分級目錄第一方陣T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中國核心學術期刊RCCSE
  • JST China
  • FSTA
  • 中國精品科技期刊
  • 中國農業核心期刊
  • CA
  • WJCI
  • 中國科技核心期刊CSTPCD
  • 中國生物醫學SinoMed
中國精品科技期刊2020
崔程,劉翠玲,孫曉榮,等. 基于近紅外高光譜成像技術的花生凍傷檢測方法研究[J]. 食品工業科技,2024,45(6):226?233. doi: 10.13386/j.issn1002-0306.2023030252.
引用本文: 崔程,劉翠玲,孫曉榮,等. 基于近紅外高光譜成像技術的花生凍傷檢測方法研究[J]. 食品工業科技,2024,45(6):226?233. doi: 10.13386/j.issn1002-0306.2023030252.
CUI Cheng, LIU Cuiling, SUN Xiaorong, et al. Peanut Frostbite Detection Method Based on Near Infrared Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(6): 226?233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030252.
Citation: CUI Cheng, LIU Cuiling, SUN Xiaorong, et al. Peanut Frostbite Detection Method Based on Near Infrared Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(6): 226?233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030252.

基于近紅外高光譜成像技術的花生凍傷檢測方法研究

Peanut Frostbite Detection Method Based on Near Infrared Hyperspectral Imaging Technology

  • 摘要: 花生在收獲、運輸、儲存和加工過程中易受到溫、濕度變化導致凍傷現象,從而影響花生及其制品的品質,為探索花生凍傷機理并提高凍傷花生檢測效率,本文采用近紅外高光譜技術研究花生凍傷無損檢測可行性、基于特征變量篩選的判別模型優化方法以及花生凍傷機理。實驗研究了變量標準化(Standard Normalized Variate,SNV)、多元散射校正(Multiplicative Scatter Correction,MSC)、Savitzky-Golag(SG)平滑以及SG平滑-SNV和SG平滑-MSC五種預處理方法對原始數據的影響,隨后分別采用競爭自適應重加權法(competitive adapative reweighted sampling,CARS)、隨機蛙跳(random frog,RF)、變量重要性投影(variable importance in projection,VIP)、連續投影算法(successive projections algorithm,SPA)、蒙特卡洛無信息變量消除(Monte Carlo uninformative variable elimination,MC-UVE)、迭代保留信息變量(Iteration retention information variable,IRIV)、變量組合種群分析-迭代保留信息變量(Variable combination population analysis-Iteration retention information variable,VCPA-IRIV)和變量組合種群分析-遺傳算法(Variable combination population analysis-Genetic Algorithm,VCPA-GA)8種變量選擇方法篩選得到與花生凍傷相關的特征波長,通過建立支持向量機(Support Vector Machine,SVM)選用達到判別準確率閾值為90%的特征波長作為花生凍傷特征波長。結果表明,基于近紅外高光譜成像技術的花生凍傷檢測總體可行,且精度較高,所有變量選擇方法均能有效篩選與凍傷相關的特征波長,其中VCPA-GA算法選擇了最少的7個特征波長,僅占數據集所有波長的3.125%,訓練集和測試集準確率分別為91.60%和90.12%。經過篩選得出的凍傷特征波長體現了油酸和蛋白質的信息,驗證了過低的溫度會導致花生中油酸含量下降和蛋白質含量上升。本研究為花生凍傷快速無損檢測提供了可參考的理論依據和技術支撐。

     

    Abstract: Peanuts were susceptible to frost damage during harvesting, transportation, storage, and processing due to temperature and humidity changes, which could affect the quality of peanuts and their products. In order to explore the mechanism of peanut frost damage and improve the detection efficiency of frost-damaged peanuts, this study used near-infrared hyperspectral technology to study the feasibility of non-destructive detection of peanut frost damage, optimization methods based on feature variable screening discriminant models, and the mechanism of peanut frost damage. The effects of five preprocessing methods, including standard normalized variate (SNV), multiplicative scatter correction (MSC), Savizkg-Golag (SG) smoothing, SG smoothing-SNV, and SG smoothing-MSC, on the original data were experimentally studied. Then, eight variable selection methods, including competitive adaptive reweighted sampling (CARS), random frog (RF), variable importance in projection (VIP), successive projections algorithm (SPA), Monte Carlo uninformative variable elimination (MC-UVE), iteration retention information variable (IRIV), variable combination population analysis-iteration retention information variable (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA), were used to screen the feature wavelengths related to peanut frost damage. Support vector machine (SVM) was used to select the feature wavelengths that reached the discrimination accuracy threshold of 90% as the feature wavelengths of peanut frost damage. The results showed that the detection of peanut frost damage based on near-infrared hyperspectral imaging technology was generally feasible and had high accuracy. All variable selection methods can effectively screen the feature wavelengths related to frost damage. Among them, the VCPA-GA algorithm selected the least 7 feature wavelengths, accounting for only 3.125% of all wavelengths in the dataset. The accuracy of the training set and the test set were 91.60% and 90.12%, respectively. The selected frostbite characteristic wavelength reflects information about oleic acid and protein, verifying that excessively low temperatures can lead to a decrease in oleic acid content and an increase in protein content in peanuts. This study provides a theoretical basis and technical support for the rapid non-destructive detection of peanut frost damage.

     

/

返回文章
返回
在线观看国产成人综合视频